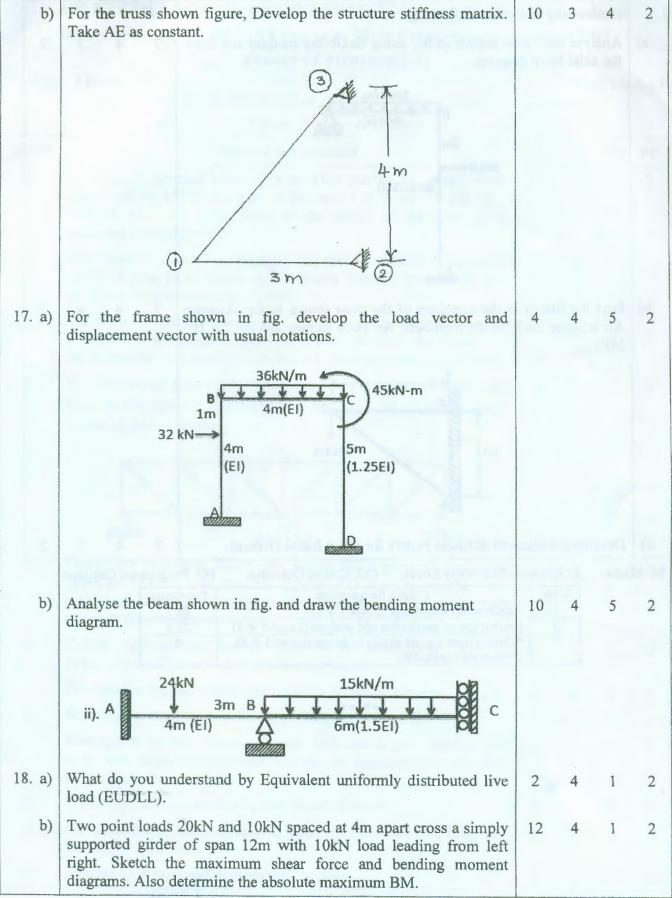
Hall Ticket Number:

Code No. : 16112

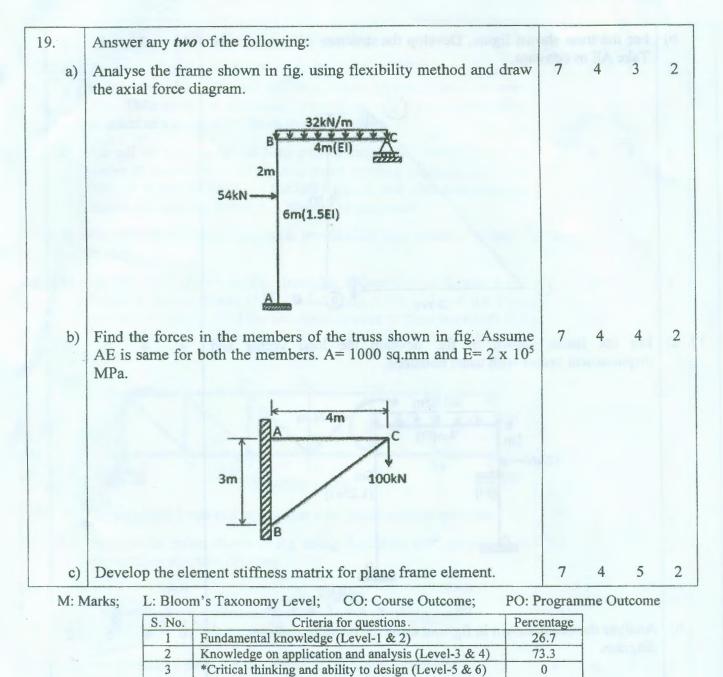
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Civil Engg. : CBCS) VI-Semester Main Examinations, January-2021 Theory of Structures-II

Time: 2 hours

Max. Marks: 60


Note: Answer any NINE questions in Part-A and any THREE from Part-B

Part-A (9	×	2	-	18	Marks)
-----------	---	---	---	----	--------


Q. No.	Stem of the question	M	L	СО	PO
1.	A simply supported beam of span 10m carries two point loads 10kN and 20 kN at distance of 2m and 7 m from the left hand support. Find the shear force at the centre of the span using influence line diagrams.	2	3	1	2
2.	The absolute maximum bending moment in a simply supported girder of span 10 m due to an udl greater than the span is 100 kN-m. What is the intensity of the udl?	2	4	1	2
3.	In case of a three hinged parabolic arch of span 40m and rise 4m draw the influence line diagram for horizontal thrust and hence find the maximum horizontal thrust due to a moving point load of 50kN.	2	2	2	2
4.	For the through type bridge girder shown in fig. find the maximum force in the member U_3L_3 due to a moving load of 100kN using influence line diagrams. U_3	2	3	2	2
	6@5m = 30m				
5.	Derive the flexibility coefficient matrix for a propped cantilever beam of span L and flexural rigidity EI, considering the prop reaction as the redundant, if it carries a udl of magnitude w per unit run over the entire span.	2	3	3	2
6.	Define stiffness coefficient? What is the relationship between flexibility coefficient and stiffness coefficient?	2	1	3	2
7.	Develop the transformation matrix for a 2-D truss element.	2	3	4	2
8.	Write the stiffness matrix for a truss element in local coordinates.	2	1	4	2
9.	Distinguish between beam elements with one degree freedom per node with beam element with two degree freedom per node with reference to their usage.	2	2	5	2
10.	Write the stiffness matrix of plane frame element.	2	1	5	2
11.	For a cantilever beam of span L draw the influence line diagrams for support reactions.	2	3	1	2
12.	Explain deck type and through type bridges.	2	2	2	2

Code No. : 16112

Code No. : 16112

(*wherever applicable)

MUN